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Information Sheet 

 

Title: Plane-based Object Categorization using Relational Learning 

Authors: Reza Farid, Claude Sammut 

1. What is the main claim of the paper? Why is this an important contribution to the machine 

learning literature?  

We use Inductive Logic Programming (ILP) to learn classifiers for generic object recognition from 

point clouds, generated by 3D cameras, such as the Kinect. Each point cloud is segmented into 

planar surfaces. Each subset of planes that represents an object is labelled and predicates 

describing those planes and their relationships are used for learning. Our claim is that a relational 

description for classes of 3D objects can be built for robust object categorisation in a real robotic 

application.  

The paper makes two contributions: as an extension to relational learning, we demonstrate how 

high-level feature construction from a sensor that generates complex data is essential for enabling 

learning; and as an application, we show how ILP can be used for real world robotics tasks. 

Robots developed for urban search and rescue have been successfully deployed in many disasters, 

such as the Fukushima nuclear reactor damaged in the earthquake and tsunami that struck Japan in 

March 2011. Rescue robots may be tele-operated or autonomous. When running autonomously, 

recognition of objects is essential so that the robot knows how to behave. For example, 

recognising a staircase and its properties tells a tracked robot how to reconfigure the flippers to be 

able to climb successfully. A relational representation is useful in this application because we wish 

to recognise objects that are characterised by relationships between its parts.  

2. What is the evidence you provide to support your claim? Be precise.  

We have conducted extensive experimental evaluations using data collected from the RoboCup 

Rescue Robot competition over several years and from natural scenes in a variety of locations. 3D 

range images are obtained from a Microsoft Xbox Kinect. The same method has also been applied 

to images from a SwissRanger SR-3000 and the Asus Xtion PRO LIVE. These are mounted on a 

tracked robot capable of traversing rough terrain such as rubble, uneven flooring, ramps and 

staircases. 

To label training and test examples, we developed a user-interface that processes each range 

image, converting it to a point cloud, which is segmented in to a set of planes and shown to a 

human trainer who chooses a set of regions to form the training examples. The examples are 

represented as a set of Prolog ground clauses, in which the literals describe properties of the planes 

and their relations to one another. 

Two ILP systems are tested, ALEPH and Metagol. We use 10-fold cross-validation with and 

without noise tolerance. We investigate knowledge accumulation, using the result of training on 

one concept as background knowledge learning a more complex object. We also perform 

experiments to determine the most informative predicates and which of the less informative ones 

can be eliminated. To compare the result of feature evaluation and noise tolerance, we use a 

compression measure and the number of rules generated. 

MLJ contribution information sheet (pls see the instructions)
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All results show high accuracy and robustness. As expected, training with noise tolerance 

generates representations that have greater compression. 

3. What papers by other authors make the most closely related contributions, and how is your 

paper related to them?  

Our approach is most closely related to Shanahan (2002, 2004) who uses a logic program as a 

relational representation for 3D objects in 2D line drawings, and abduction is used in object 

recognition. We have extended this representation, replacing the 2D lines with 3D planes. 

Furthermore, we use ALEPH (Srinivasan 2001) and Metagol (Muggleton et al, 2013) to learn the 

logic programs from instances obtained by a robot equipped with a depth camera. 

4. Have you published parts of your paper before, for instance in a conference? If so, give details 

of your previous paper(s) and a precise statement detailing how your paper provides a significant 

contribution beyond the previous paper(s). 

An earlier version of this paper was presented at 22 International Conference on Inductive Logic 

Programming (ILP2012), Dubrovnik, Croatia, 17-19 September 2012. As a result of the ILP 

conference, we were invited to send our revised paper for MLJ special issue of ILP.  

More details are provided in this paper. In the earlier version, we had not considered noise 

tolerance.  We have redone all the experiments for this revised paper, including noise tolerance. 

We have also extended feature selection, examining prior filtering of redundant predicates and 

using measurements such as amount of compression and number of rules for comparison. 

Comparing the results from ALEPH with Metagol is also an addition to the paper. We describe 

two experiments that show the usefulness of ILP’s human-readable representation. 

References: 

Shanahan, M. A logical account of perception incorporating feedback and expectation. In  

Proceedings KR, 2002 (pp. 3-13) 

Shanahan, M., & Randell, D. A logic-based formulation of active visual perception. In  

Proceedings KR, 2004 (Vol. 4, pp. 64–72) 

Srinivasan, A. (2001). The Aleph Manual. Technical report: University of Oxford. 

Muggleton, S., Lin, D., Pahlavi, N., & Tamaddoni-Nezhad, A. (2013). Meta-interpretive 

Learning:application to Grammatical Inference. Machine Learning; Special issue on Inductive 

Logic Programming. 
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Abstract- We use Inductive Logic Programming (ILP) to learn classifiers for generic object 

recognition from point clouds, as generated by 3D cameras, such as the Kinect. Each point cloud is 

segmented into planar surfaces. Each subset of planes that represents an object is labelled and 

predicates describing those planes and their relationships are used for learning. Our claim is that a 

relational description for classes of 3D objects can be built for robust object categorisation in real 

robotic application. To test the hypothesis, labelled sets of planes from 3D point clouds gathered 

during the RoboCup Rescue Robot competition are used as positive and negative examples for an 

ILP system. The robustness of the results is evaluated by 10-fold cross validation. In addition, 

common household objects that have curved surfaces are used for evaluation and comparison 

against a well-known non-relational classifier. The results show that ILP can be successfully 

applied to recognise objects encountered by a robot especially in an urban search and rescue 

environment. 

 

Keywords- object classification, inductive logic programming, machine learning, 

urban search and rescue, 3D point cloud. 

 

1. Introduction 

In this work, we use machine learning to build an object classifier for an autonomous 

robot in an urban search and rescue operation. The primitive input to the classifier is a 3D 

range image, representing a partial view of the environment. Generic object recognition 

Manuscript
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requires the representation of classes of objects and a classification method to recognise 

new objects. Object features may be visual, structural, functional, etc. 

3D depth cameras, such as the Microsoft Xbox Kinect and ASUS Xtion PRO LIVE, are 

now becoming widely used because they provide both range and video images and their 

cost are much reduced compared with previous generations of such cameras. In a range 

image, each pixel's value represents the distance of the sensor to the surface of an object 

in a scene from a specific viewpoint (Stefan Gachter 2005; S. Gachter et al. 2006). This 

can be used to infer the shape of the object (Hegazy and Denzler 2009). These sensors, 

also incorporate a colour video camera but in this paper, we only use the depth 

information for object recognition as colour calibration under different lighting conditions 

is problematic (Opelt 2006). A range image can be transformed into a set of 3D 

coordinates for each pixel, producing a point cloud. Figure 1 shows a range image of a 

staircase with four steps, taken by a robot positioned in front of the staircase. In this grey 

scale image, the darker colour represents closer surfaces. For more clarity, a colour-

mapped version is also presented. The range image is converted into a point cloud. Some 

points in this cloud are removed because they are far away such as the points in the 

yellow region of the colour-mapped version. The figure also includes front and top views 

for the same point cloud. The point cloud is segmented into planes that are identified by 

unique colours. A range image only provides a partial view of a scene, since it is taken 

from one viewpoint. Constructing a complete 3D point cloud for an object requires 

multiple views. 

In our current experiments, we extract planes from the 3D point cloud and use them as 

primitives for object recognition. Planes are useful in built environments, including 

indoor urban search and rescue for identifying floors, walls, staircases, ramps and other 

terrain that the robot is likely to encounter. For outdoor environments, other primitives 

may be used. However, the emphasis in this paper is object recognition in indoor 

environments. An ILP system is used to discover the properties and relationships between 

the planes that form an object and to represent them as logical rules, based on the training 

examples and background knowledge (S. Muggleton 1991). In the following sections, we 

describe the plane extraction method, the learning algorithm and the experimental results 

that demonstrate the utility of this approach.  

 

Figure 1. Range image and its correspondent point cloud (coloured) from front and top view 
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2. Background and Related Work 

A considerable amount of research has been devoted to generic object recognition (Opelt 

2006; Vasudevan et al. 2007; Shin 2008; Endres 2009), which is required by robots in 

many tasks. For example in service robotics applications, such as a catering or a domestic 

robot (Shin 2008), the robot must recognise specific kinds of tableware. In industrial 

applications, the robot has to distinguish a set of products (Endres 2009). We are mostly 

interested in urban search and rescue (USAR), where a team of robots is sent to a disaster 

site. The robots are intended to search for victims and return to the human rescuers about 

the location and condition of the victims. The RoboCup Rescue Robot competition is a 

test bed for research in USAR (Kadous et al. 2005) and is the source of most of the 

training data used in our experiments. 

In recent years, statistical methods such as SIFT (Lowe 1999) have become popular in 

object recognition. However, these are limited to recognising individual objects that have 

been previously seen and stored in the vision system’s database. In generic object 

recognition (GOR) (Fergus et al. 2003), the system learns to recognise an object as 

belonging to a generic class (Froimovich et al. 2007), as one would expect in concept 

learning. A generic description of an object class has been suggested as a combination of 

structural and functional concepts extracted from input data by Froimovich et al. (2002). 

Pechuk et al. (2008) have developed a function-based object classification method. In 

addition, Posner et al. (2007, 2008) suggest a semantic labelling system for outdoor urban 

workspaces that uses SVMs for classification. Although, SVMs can be used for object 

recognition, they cannot provide information about an object’s structure, which is needed 

for robot action planning, as we explain later. In contrast, relational learning is well suited 

for learning object classes, provided that the primitive features needed for recognition can 

be reliably extracted from the image. Xu and Petrou (2010) have used Markov logic 

networks for scene interpretation and categorization.  

Our approach is most closely related to Shanahan (2002); Shanahan and Randell (2004) 

who uses a logic program as a relational representation for 3D objects in 2D line 

drawings, and abduction is used in object recognition. We have extended this 

representation, replacing the 2D lines with 3D planes. Furthermore, we use ALEPH 

(Srinivasan 2001) to learn the logic programs from instances obtained by a robot 

equipped with a depth camera. Originally this was a SwissRanger SR-3000 camera, 

which has now been replaced by a Kinect. The robot is shown in Figure 2. It was 

designed to participate in the RoboCup Rescue Robot competition, held annually. The 

competition arena uses elements designed by the US National Institute of Standards and 

Technology  (NIST 2010) to certify robots for emergency operations. These elements are 
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typical of hazards that might be expected in buildings damaged by a disaster such as an 

earthquake. 

Robots developed for the rescue competition have been successfully deployed in the 

Fukushima nuclear reactor damaged in the earthquake and tsunami that struck Japan in 

March 2011. A portion of a typical arena is shown in Figure 3. The task for the robot is to 

traverse the arena, searching for victims while making a map of the area. Rescue robots 

may be tele-operated or autonomous. Our rescue robot team has won the RoboCup award 

for best autonomous robot three years in succession 2009-2011. 

When running autonomously, recognition of objects is essential so that the robot knows 

how to behave. For example, recognising a staircase tells a wheeled robot that it must 

avoid that object, whereas a tracked robot, such as the one in Figure 2 is capable of 

climbing stairs but it must reconfigure the flippers to be able to climb successfully. A 

relational representation is useful in this application because we wish to recognise objects 

that are characterised by relationships between their parts, as in the steps that constitute a 

staircase, and the number of parts may not be fixed, as the number of steps in a staircase 

can vary.  

Before discussing the ILP methods used to learn to recognise objects in the arena, we first 

discuss the pre-processing required for feature extraction. 

S e n s o r  h e a d

B a s e  

jo in t

A u t o - l e v e l l e d

l a s e r  r a n g e f i n d e r

H e a d i n g - a t t i t u d e  s e n s o r

O n b o a r d  c o m p u t e r

M o v a b l e  f l i p p e r s

R a n g e  i m a g e r

 

Figure 2. The rescue robot platform 

 

 

Figure 3. Roll and pitch ramps in a RoboCup rescue arena 
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3. Feature Extraction 

We use the plane as the primitive for describing objects, where an object is considered to 

be composed of a set of planes derived from a point cloud. To find these planes, each 

point’s normal vector is calculated and used to segment the point cloud. That is, 

neighbouring points are clustered by the similarity of their normal vectors which is based 

on the angle between them as explained in our previous work (Farid and Sammut 2012). 

Figure 1 shows an example of planes found using this method. Attributes of the planes 

are then calculated, including the spherical coordinate representation of the planes normal 

vector and the relationships between pairs of planes, e.g. the angle separating them. After 

extracting these features, sets of planes are labelled according to the class to which they 

belong. The ALEPH ILP system (Srinivasan 2001)  builds a classifier for each class, 

where objects belonging to that class are considered positive examples and all other 

objects are treated as negative examples. 

In addition to the spherical coordinate representation of a plane’s normal vector (θ and φ) 

(Vince 2005), where θ is defined as zero for undefined situations, other attributes are 

derived from the convex hull of the plane. These are the diameter and width of the convex 

hull and the ratio between these values. The plane’s bounding cube is used to calculate 

the ratios between the three axes, two by two. The final plane feature is the axis along 

which the plane is most distributed. Figure 4 shows the results of segmentation, convex 

hull creation and normal vector representation for a scene that contains a pitch/roll ramp 

and maze wall objects. 

After planes are found and their individual attributes are calculated, we then construct 

relations between each pair of planes. The first relation is the angle between the normal 

vectors of each pair of adjacent planes. The second is a directional relationship (Peuquet 

and Ci-Xiang 1987; Dönderler et al. 2000) that describes how two planes are located with 

respect to each other. For example, as shown in Figure 5, rectangle B is located on the 

‘east’ side of rectangle A, from the perspective one 2D view. Also rectangle A covers C, 

while rectangles B and C are connected. Since planes exist in 3D space, we project the 

3D view onto two 2D views and find spatial-directional relationships in each 2D view. A 

bounding cube, with respect to the sensor’s coordinate frame, is generated for each set of 

points assigned to a plane. Then, two projections of this cube are used to represent the 

minimum bounding rectangles for the region from each of the two views. The projections 

are on the XY plane (front view) and the ZX plane (top view). Having two 2D views of a 

3D object is sufficient to represent its bounding rectangles.  
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Figure 4. Colour image and segmented point cloud (front view), representing convex hull and 

normal vector for each region 

 

Figure 5. east(B,A), covers(A,C), connected(B,C) 

4. Learning Object Classes 

To label training and test examples, we developed a user-interface that processes each 

range image, converts it to a point cloud and then shows the result of point cloud 

segmentation to a human trainer who chooses a set of coloured regions to form a positive 

example of an object and a negative example for some other objects. The trainer labels set 

of planes with the class to which the object belongs, e.g. staircase, wall, and pitch/roll 

ramp. Each image may contain several objects, which the system will learn to distinguish 

and recognise. For example, Figure 4 contains a ‘pitch/roll ramp’ and a maze ‘wall’, and 

Figure 6 contains three classes as ‘wall’, ‘desk-top’ and ‘box’. ALEPH is used to 

construct one classifier for each type of object. For example, to learn to recognise a 

staircase, all the objects labelled as staircases are treated as positive examples and all 

other objects are considered negative examples. In these experiments, the range images 

are obtained from a Microsoft Xbox Kinect. The same method has also been applied to 

images from a SwissRanger SR-3000 and the Asus Xtion PRO LIVE. 

After labelling, the data set is ready to be used for learning. The labelled planes are 

represented as a set of Prolog ground clauses. Figure 6 shows the legend for the colours 

used, the point cloud segmentation with each region’s convex hull and normal vector and 

the corresponding colour image. The red region, region 1, represents the wall, while the 

yellow region, region 4, represents the top of a desk. For this example, we define a 

positive example for the class “box” that includes regions 2, 3 and 5, creating the 
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predicate box([pl00_2,pl00_3,pl00_5]). That is, predicates of the form box(+plane-set) 

represent a set of planes in an image that form an instance of the class. 

A training instance is described by a set of predicates, where a subset of predicates 

specifies which planes constitute the example. Note that, to make each plane identifier 

unique, we use a name based on the image number and plane number.  

 plane(pl00_1).  plane(pl00_2).  plane(pl00_3).  

 plane(pl00_4).  plane(pl00_5).  

The next set of predicates describes the individual attributes for each plane. The first 

attribute is on which axis the plane is distributed most. To calculate this, we find the 

difference between the maximum and minimum values of a region’s point coordinates 

(∆x, ∆y and ∆z) and compare them to decide which axis should be chosen.  

 distributed_along(pl00_1,axisX). 

 distributed_along(pl00_2,axisX). 

 distributed_along(pl00_3,axisX). 

 distributed_along(pl00_4,axisX). 

 distributed_along(pl00_5,axisY). 

We also use the ratio between each pair of values (∆x/∆y, ∆y/∆z and ∆x/∆z) as another 

set of features. However, instead of using the exact value, we bin them in intervals 

defined around fixed values 1, 1.5, 2, 2.5, …, 10 and 10.5 (±0.25). If a ratio is bigger than 

a maximum value (10.25 here), we represent it as ‘10.5±0.25’. For example, ‘1.23’ and 

‘1.12’ both fall in the interval ‘1±0.25’. A similar discretisation is applied to another 

plane feature, the ratio between the diameter and width of the convex hull. To avoid 

having ratio values such as ‘0.005’, we defined negative ratio values. For example, for 

plane pl00_5, ∆x < ∆z, therefore the ratio ∆x/∆z is represented as negative value of 

∆z/∆x. Bin ratios ‘1-0.25’ and ‘-1+0.25’ are not possible based on our definition. 

However, we kept the same ‘±0.25’ interval for all bins. 

 

 

Figure 6. Colour legend (top), colour image and segmented point cloud (front view) for box 
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 ratio_yz(pl00_1,'-1.0±0.25').  ratio_xz(pl00_1,'4.5±0.25'). 

 ratio_xy(pl00_1,'5.0±0.25').  … 

 ratio_yz(pl00_5,'1.0±0.25').  ratio_xz(pl00_5,'-1.5±0.25'). 

 ratio_xy(pl00_5,'-1.5±0.25'). 

 

 ch_ratio(pl00_1,'4.0±0.25').  ch_ratio(pl00_2,'2.5±0.25'). 

 ch_ratio(pl00_3,'3.5±0.25').  ch_ratio(pl00_4,'2.0±0.25'). 

 ch_ratio(pl00_5,'1.5±0.25'). 

The last plane attribute is the spherical coordinate representation of its normal vector. 

Similar to the ratio representation, we use an interval centred on a particular angle. For 

example, 91.35 and 87.87 are binned in the interval ‘90 ±15’. 

 normal_spherical_theta(pl00_1, '-90±15'). 

 normal_spherical_phi(pl00_1, '135±15'). 

 … 

normal_spherical_theta(pl00_5, '-135±15'). 

 normal_spherical_phi(pl00_5, '112±15').     

Relations are derived from pairs of planes: the angle between the normal vectors of two 

planes and the directional relationship for two adjacent planes from XY and XZ views. 

Note that, since we use a projection of each plane on XY and XZ, two planes can appear 

adjacent in one view and not in the other. For the above example, the relations are: 

angle(pl00_1,pl00_2,'90±15').  angle(pl00_1,pl00_3,'45±15'). 

angle(pl00_1,pl00_4,'90±15').  angle(pl00_1,pl00_5,'45±15'). 

angle(pl00_2,pl00_3,'90±15').  angle(pl00_2,pl00_4,'0±15'). 

angle(pl00_2,pl00_5,'90±15').  angle(pl00_3,pl00_4,'90±15'). 

angle(pl00_3,pl00_5,'90±15').  angle(pl00_4,pl00_5,'90±15'). 

 

dr_xz(pl00_1,pl00_2,connected). dr_xz(pl00_1,pl00_2,west). 

dr_xz(pl00_2,pl00_1,east).  dr_xz(pl00_2,pl00_3,west). 

 … 

dr_xz(pl00_5,pl00_3,connected). dr_xz(pl00_5,pl00_3,south). 

dr_xz(pl00_5,pl00_4,covers). 

 

dr_xy(pl00_1,pl00_2,connected). dr_xy(pl00_1,pl00_2,north). 

dr_xy(pl00_1,pl00_3,connected). dr_xy(pl00_1,pl00_3,north). 

 … 

dr_xy(pl00_4,pl00_5,is_covered). dr_xy(pl00_5,pl00_2,east). 

dr_xy(pl00_5,pl00_4,covers). 
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Regions 2, 3 and 5, which form a box, are perpendicular to each other and this is 

represented by their pair-wise angle relationships.  

We use planes 1 and 2 to illustrate a directional relationship. From both views, front and 

top, the regions overlap. Thus, “connected” is the value of the third argument in both 

directional relationships. From the XY view, region 2 (green) is below region 1 (red) and 

plane1 is north of plane2, giving, dr_xy(pl00_1,pl00_2,north). Similarly, projecting these 

planes in the XZ view and assuming the X-axis represents north-south and the Z-axis 

represents east-west, plane1 is west of plane2 in the XZ view, given by 

dr_xz(pl00_1,pl00_2,west). 

The number of planes that form an object may differ. For example, different sets of 

planes from an image can form positive examples for staircase (Figure 7): 

staircase([pl02_06,pl02_08,pl02_10,pl02_11]). 

staircase([pl02_05,pl02_06,pl02_08,pl02_10]). 

staircase([pl02_04,pl02_05,pl02_06,pl02_08]). 

staircase([pl02_01,pl02_03,pl02_04,pl02_05]). 

staircase([pl02_01,pl02_03,pl02_04,pl02_05,pl02_06,pl02_08]). 

staircase([pl02_03,pl02_04,pl02_05,pl02_06]). 

staircase([pl02_01,pl02_03,pl02_04,pl02_05,pl02_06,pl02_08,pl02_10]). 

staircase([pl02_04,pl02_05,pl02_06,pl02_08,pl02_10,pl02_11]). 

staircase([pl02_01,pl02_03,pl02_04,pl02_05,pl02_06,pl02_08,pl02_11]). 

5. Evaluation 

5.1. Initial Evaluation 

To evaluate the learning system, which we call PLOCRL (PLane-based Object 

Categorization using Relational Learning), we use 10-fold cross-validation. In one 

experiment, we do not allow any rule to cover any negative example, while in the second 

experiment, some false positives are accepted. There is a parameter in ALEPH for this 

purpose that can be set by “set(noise,+V)”. “V” is an integer value that defines the upper 

bound on the number of false positives allowed and we set it to 10 in our experiment. 

However, none of the rules covered more than 8 false positives in practice. The 

performance of the learning algorithm is measured by accuracy, precision and recall as 

shown in Table 1 and Table 2.  
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Figure 7. Stairs with different number of planes 

 

 Table 1. Results for 10-fold cross validation, no noise accepted 

Object 
No. 

positive 

No. 

negative 

Accuracy 

=(TP+TN)/N 

Precision 

=TP/(TP+FP) 

Recall 

=TP/(TP+FN) 

Step 197 718 95.74 92.47 87.31 

Staircase 237 656 99.66 98.75 100 

Wall 105 803 98.79 97.96 91.43 

Box 143 771 96.28 94.31 81.12 

Pitch/roll 

ramp 
131 201 97.59 96.95 96.95 

mean ± std. (percentage) 97.61±1.65 96.09±2.63 91.36±7.54 

 

Table 2. Results for 10-fold cross validation, some noise accepted 

Object 
No. 

positive 

No. 

negative 
Accuracy Precision Recall 

Step 197 718 95.63 89.05 90.86 

Staircase 237 656 99.33 98.33 99.16 

Wall 105 803 97.58 87.39 92.38 

Box 143 771 95.84 85.23 88.81 

Pitch/roll 

ramp 
131 201 97.89 95.59 99.24 

mean ± std. (percentage) 97.25±1.54 91.12±5.59 94.09±4.83 

 

The classifiers achieve high accuracy because we have ensured that the training data 

include images taken from several viewpoints. For example, a box, depending on the 

viewpoint, may appear to have two or three sides. The longest side of the box may be 

horizontal, vertical or diagonal. By including examples of all these variations, we can 

train the classifiers to handle different perspectives. The features used in describing 
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objects also affect the generality of the classifier. We construct features that are, as much 

as possible, invariant to transforms and thus, enable the learning algorithm to find general 

descriptions. 

An example of a learned classifier for the concept of “staircase” assuming no false 

positives are allowed, is shown below. It was constructed from 237 positive examples and 

656 negative examples. 

[Rule 1] [Pos cover = 186 Neg cover = 0] 

staircase(B) :- 

member(C,B),  member(D,B),   

dr_xz(D,C,east),  member(E,B), 

angle(E,C,'0±15'),  dr_xy(E,D,south). 

[Rule 2] [Pos cover = 213 Neg cover = 0] 

staircase(B) :- 

member(C,B),  member(D,B),   

angle(D,C,'0±15'), member(E,B),   

angle(E,D,'90±15'),  angle(E,C,'90±15'),  

distributed_along(E,axisX). 

[Rule 3] [Pos cover = 127 Neg cover = 0] 

staircase(B) :- 

member(C,B),  member(D,B),   

dr_xy(D,C,south),  member(E,B),   

angle(E,D,'0±15'),  angle(E,C,'0±15'). 

In these rules, the set of planes that constitute an object is denoted by variable ‘B’. Thus, 

member(X,B) means X is a plane from plane set B.  

The first rule defines plane set B as a staircase if it has two planes C and D that D is to the 

east of C in the XZ-view. It also contains plane E, which is approximately parallel to 

plane C. Also, the spatial-directional relationship between planes E and D in the XY-

view is south. This rule covers 186 positive examples (above 78.48% of all positive 

examples) and no negative examples.  

The second rule defines B as a ‘staircase’ if B has planes C, D parallel to each other and 

E is distributed mostly along X-axis and perpendicular to C and D. This rule covers 213 

positive examples (above 89.87% of total positives) and no negative examples. 

Finally, the third rule represents plane sets having at least three planes C, D and E where 

E is parallel to C and D, while D is to the south of C in the XY-view. This rule covers 

more than 53.58% of the positive examples. 

Classifiers learned when allowing some false positives are mostly shorter. For example, 

in the case of “staircase”, three rules are induced. Two of these rules are similar to rule 2 
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and 3 above. However rule 1 changes, as shown below, with more positive example 

coverage: 

 

[Rule 1] [Pos cover = 204 Neg cover = 7] 

staircase(B) :- 

member(C,B),   member(D,B),  

dr_xy(D,C,south),  member(E,B),  

distributed_along(E,axisX), dr_xy(E,D,south). 

 

To compare the results obtained when noise is tolerated or not, we consider the number of 

rules induced, the number of predicates for each rule, and finally the number of positive 

and negative examples covered by each rule. We use the compression measure taken 

from ALEPH, P-N-L+1 where P and N are the number of positive and negative examples 

covered by the rule and L is the number of literals. The average value of this measure and 

the number of rules are shown in Table 3 and Table 4 for each object class for two 

experiments mentioned. These tables show that allowing some tolerance to noise gives 

shorter rules, fewer rules and more compression and greater coverage. Thus, accepting 

some false positives is preferred. 

 

Table 3. Comparing compression average with and without noise tolerance 

Object 
 Without Noise 

Tolerance 

 With Noise 

Tolerance 

step 16.33 32.6 

staircase 170 173.67 

wall 11.25 11.25 

box 9.06 15.43 

Pitch/roll ramp 18.5 49 

 

Table 4. Comparing the number of rules with and without noise tolerance 

Object 

 Without Noise 

Tolerance 

 With Noise 

Tolerance 

step 15 10 

staircase 3 3 

wall 8 8 

box 17 14 

Pitch/roll ramp 12 4 
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In many cases, it is difficult to interpret and label part of an image without understanding 

its context (Esposito and Malerba 2001). ILP’s ability to create relational concept 

descriptions can assist in learning such context dependencies. One of the most useful 

attributes of ILP is that learned concepts can become background knowledge for later 

learning, thus allowing the system to build complex hierarchical representations. For 

example, a ‘staircase’ may be described as a set of planes but a more general description 

might be that a staircase is an ordered set of steps, where the concept of “step” has been 

previously learned. A recursive definition of staircase would allow a variable number of 

steps.  

We first used ALEPH to construct concepts using additional background knowledge. The 

concept “step” was first learned, requiring 9 rules, 4 of them had less than 10% positive 

coverage. Thus, we only show the 5 remaining rules here: 

 [Rule 1] [Pos cover = 115 Neg cover = 8] 

step(B) :- 

n_of_parts(B,2),  member(C,B), 

member(D,B),   dr_xy(C,D,north),  

 normal_spherical_theta(C,'-90±15'), 

distributed_along(C,axisX), distributed_along(D,axisX).  

[Rule 3] [Pos cover = 128 Neg cover = 1] 

step(B) :- 

n_of_parts(B,2), member(C,B),  member(D,B), 

normal_spherical_theta(C,'-90±15'),  angle(D,C,'90±15'),  

distributed_along(D,axisX). 

[Rule 4] [Pos cover = 24 Neg cover = 1] 

step(B) :- 

n_of_parts(B,2), member(C,B), 

member(D,B),   angle(D,C,'0±15'), dr_xz(D,C,east). 

[Rule 7] [Pos cover = 24 Neg cover = 1] 

step(B) :- 

n_of_parts(B,2), member(C,B), 

member(D,B),   normal_spherical_phi(D,'112±15'), 

dr_xy(C,D,connected), dr_xy(C,D,north). 

[Rule 8] [Pos cover = 40 Neg cover = 0] 

step(B) :- 

n_of_parts(B,2),  member(C,B),  member(D,B), 

ratio_xz(D,'10.5±0.25'), dr_xz(C,D,west). 
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We then ran two experiments. In the first experiment, we added all “step” rules to the 

background knowledge, while in the second experiment, we just added the rules that had 

at least 10% coverage on positive examples – the 5 best “step” rules mentioned above - to 

the background knowledge.  

The result of the first experiment was just one rule that defines “staircase” based on 

“step” as follows. This rule covers all positive examples and a small number of negative 

examples. 

[Rule 1] [Pos cover = 237 Neg cover = 6] 

staircase(B) :- 

subset(C,B),  step(C), 

subset(D,B),  step(D), intersect(C,D). 

This rule says that plane set B is a staircase if it contains plane sets C and D, both of 

which are steps and intersect each other, meaning that they are different and have at least 

one plane in common. 

The second experiment yields two rules. The first rule that uses “step” covered 235 out of 

237 positive examples and 5 negative examples. 

[Rule 1] [Pos cover = 235 Neg cover = 5] 

staircase(B) :- 

member(C,B),   member(D,B), angle(C,D,'0±15'), 

distributed_along(D, axisX), subset(E,B), step(E). 

[Rule 2] [Pos cover = 7 Neg cover = 0] 

staircase(B) :- 

member(C,B),  ratio_yz(C,’8.0±0.25’),  

ratio_xz(C,’9.0±0.25’).  

Thanks to the assistance of Stephen Muggleton and Dianhuan Lin, we were able to 

compare the results from ALEPH with Metagol (Stephen Muggleton et al. 2013). 

Muggelton and Lin attempted to learn the recursive concept of staircase using a 

simplified version of the data set that just contains “angle” predicates. Metagol is capable 

of predicate invention and thus, the “p_a” predicate, which is the concept of a step, was 

created automatically. The clauses learned by Metagol are: 

staircase(B):- p_a(B). 

staircase([X,Y,Z|B]):- 

      p_a([X,Y,Z]),      staircase([Z|B]).  

 

p_a(B) :-  

member(X,B),  member(Y,B), 

angle(X,Y,'90±15'), member(Z,B),  angle(X,Z,'0±15'). 
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5.2. Feature Evaluation 

In this section, we describe three experiments with ALEPH in which we try to determine 

the most informative predicates and which of the less informative ones can be eliminated. 

In the first experiment, we remove the 2D spatial-directional predicates. In the second, we 

also eliminate “ratio_yz”, “ratio_xy”, “ratio_xz” and “distributed_along”. In the last 

experiment we remove “ch_ratio”, only keeping “angle”, “normal_spherical_theta” and 

“normal_spherical_phi”. Using the same data, the 10-fold cross validation results are 

presented in Table 5, while experiment 0 shows the result when no predicate is removed. 

As there is no significant loss of accuracy, all the removed predicates are redundant. 

However, the length of the concept description increases while the average compression 

has decreased as shown in Table 6. In this table, we compare two learning runs: in the 

first, no predicate is removed and in the second, we keep the minimum set of predicates 

“angle”, “normal_spherical_theta” and “normal_spherical_phi”. So if simplicity of the 

description and compression are used as evaluation criteria, the eliminated predicates are 

not redundant, as they allow more compact descriptions to be learned. An example is 

shown below: 

Table 5. Mean and std. (%) for 10-fold cross validation before and after disabling some predicates 

Experiment Accuracy  Precision  Recall  

0 97.25±1.54 91.12±5.59 94.09±4.83 

1 96.87±2.41 90.17±8.44 93.4±6.35 

2 97.01±2.29 91.25±7.68 92.02±7.79 

3 97.16±2.41 93.52±6.01 90.49±12.3 

 

Table 6. Comparing compression average for two selected experiments 

Object Experiment 1 Experiment 2 

step 32.6 13.29 

staircase 173.67 144 

wall 11.25 8.9 

box 15.43 3.41 

Pitch/roll ramp 49 50.33 

 

[Rule 1] [Pos cover = 143 Neg cover = 2] 

staircase(B) :-  

member(C,B),  member(D,B),   

angle(D,C,'0±15'), member(E,B),   

angle(E,D,'0±15'), angle(E,C,'0±15'). 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 

[Rule 2] [Pos cover = 213 Neg cover = 1] 

staircase(B) :-  

member(C,B),  member(D,B),   

angle(D,C,'0±15'), member(E,B),   

angle(E,D,'90±15'), angle(E,C,'90±15'). 

[Rule 3] [Pos cover = 92 Neg cover = 0] 

staircase(B) :-  

n_of_parts(B,4),  member(C,B),  

member(D,B),   angle(D,C,'0±15'). 

 

The first rule defines plane set B as a staircase if B has at least three planes C, D and E 

that are approximately parallel. 

The second rule considers plane set B to be a staircase if B contains three planes C, D and 

E, where C and D are parallel and both are perpendicular to E. This rule is similar to the 

invented predicate, “p_a”, that appeared in the previous section using Metagol.  

The third rule states that a plane set B having four planes is a staircase if it has two planes 

parallel to each other. 

An advantage of ILP is the readability of its output. This is useful for expert interpretation 

of the learned concept and also helpful to novices in a domain. For example, in our earlier 

training attempts, we used a smaller training set for “staircase” (237 positive examples 

and 637 negative examples). In that experiment, we had removed 2D spatial-directional 

relationship predicates, as in experiment 1 above. The learned classifier contained three 

rules, one of which was: 

[Rule 3] [Pos cover = 92 Neg cover = 0] 

staircase(B) :- 

n_of_parts(B,4). 

That is, a set of four planes was considered to be a staircase. This indicated that the 

training set did not include negative examples that had four planes. By adding few such 

negative examples (six in practice), the more specific rule was induced as below. Thus, 

readability of the concept description, as obtained in ILP, facilitated analysis of the 

training data.   

[Rule 3] [Pos cover = 92 Neg cover = 0] 

staircase(B) :- 

n_of_parts(B,4),  

member(C,B),  distributed_along(C,axisX).  
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5.3. Different Camera and Different Training Sets 

For the third evaluation, we captured data using an ASUS Xtion PRO LIVE sensor, 

which is similar to the Kinect. We also checked the robustness of learning for variations 

of object shapes. For example, can a spiral staircase (Figure 8) be recognised by rules 

trained on straight staircases and how is accuracy improved by including examples of 

spiral staircases. Figure 9 shows one scene with its point cloud segmentation. . In these 

experiments, we accept some noise and the spatial-directional relationship predicates are 

eliminated. To test the robustness of the rules trained on mostly straight staircases, 948 

new examples from a spiral staircase were classified. More than 95% accuracy is 

obtained, as shown in Table 7. When these 948 examples from the spiral staircase are 

added to the data set and tested with 10-fold cross validation, the accuracy rises further, 

as shown in Table 8. Both results indicate the robustness of the classification method. 

 

Figure 8. Spiral staircase (colour image) 

 

Figure 9. One image of spiral stairs and its point cloud segmentation result 

 

Table 7. Results for testing new data (spiral staircase) using existing rules 

Object 
No. 

positive 

No. 

negative 
Accuracy  Precision  Recall  

Staircase 948 0 95.15 100 95.15 

 

Table 8. Results for 10-fold cross validation after adding spiral staircase to the data set 

Object 
No. 

positive 

No. 

negative 
Accuracy Precision Recall 

Staircase 1185 656 99.51 99.25 100 
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5.4. Comparison with a non-relational object classifier 

In this experiment, we test the accuracy of our method on images of some common 

household objects collected using an RGB-D camera, organized into 51 categories and 

presented by Lai et al. (2011) (http://www.cs.washington.edu/rgbd-dataset). Each object 

in this dataset was placed on a turntable and a sequence of videos was taken for each 

complete rotation. This procedure was repeated three times with different camera 

positions to guarantee multiple views. We also would like to compare the result with a 

non-relational classifier (Bo et al. 2011) using the same dataset. For this experiment, we 

have chosen 7 categories ‘ball’, ‘bowl’, ‘cap’, ‘cereal box’, ‘coffee mug’, ‘kleenex’ and 

‘lemon’. Using the original captured and cropped images, we sub-sample each sequence 

by taking every 20
th
 frame. Figure 10 shows some instances (coloured image version) of 

the chosen categories. Each image in the dataset is taken as a positive example for its 

category and a negative example for the rest. The number of physically distinct instances 

for each category and number of positive and negative examples used for this experiment 

are presented in Table 9.  

 

 

 

 

Figure 10. Seven categories with some physically distinct instance sets 
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Table 9. Chosen subset of rgbd-dataset used for the last evaluation 

Object 
No. 

positive 

No. 

negative 

No. of physically 

distinct instance sets 

Number of images for each 

physically distinct instance set 

ball 276 1076 7 [41, 39, 40, 40, 39, 39, 38] 

bowl 193 1159 6 [29, 29 ,29 ,27 ,40 ,39] 

cap 126 1226 4 [31, 33, 31, 31] 

cereal box 144 1208 5 [28, 30, 30, 29, 27] 

coffee mug 240 1112 8 [27, 27, 27, 27, 26, 27, 40, 39] 

kleenex 189 1163 5 [38, 39, 40, 32, 40] 

lemon 184 1168 6 [29, 33, 30, 30, 32, 30] 

Total 1352 

 

In this evaluation, we use the same method as Bo et al. (2011), that is, 10 train/test splits 

that randomly choose one physically distinct instance set as the test set and the rest as the 

training set in each iteration. A physically distinct instance set is a collection of images 

from a particular type of object taken from different angles. We have used their 

MATLAB code
1
. However, we have modified their category recognition method based 

on the documentation they provided in their C++ code, i.e. using the ‘linear’ option for 

scaling the training and testing data. Since they have introduced some depth kernel 

descriptors for object classification using depth and colour images, we have used gradient 

kernel descriptors (Gradient KDES) and local binary pattern kernel descriptors (LBP 

KDES) separately. The average accuracy of classification using the above descriptors and 

our method are shown in Table 10. Similar to our previous evaluations, some false 

positives were accepted in our method. 

Although our method is based on ‘plane’ primitives, the accuracy is comparable to a 

state-of-the-art object classifier when it is tested on common objects that have curved 

surfaces. Moreover, our method describes the relationship between subparts which we 

claimed to be a useful feature of relational learning. In addition, our relational method is 

able to learn by using previously learned concepts in the background knowledge. These 

two properties are not present in other methods such as the depth kernel descriptors we 

used for comparison here.  

Table 10. Comparison to other method using rgbd-dataset 

Method Accuracy (mean ± std.) (percentage) 

Gradient KDES 89.07±5.10 

LBP KDES 86.51±3.10 

PLOCRL  87.90±0.91 

                                                

1 http://www.cs.washington.edu/ai/Mobile_Robotics/projects/kdes/ 
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Because we have only used ‘plane’ primitives, we expected lower accuracy for this 

experiment in comparison to our previous experiments, which used objects with mostly 

planar surfaces. Somewhat surprisingly, the accuracy is quite high. However the average 

number of rules induced for each object class for categorization increased as shown in 

Table 11. Extending primitives to more shapes such as cylinders and spheres should lead 

to improvements in accuracy, but particularly should result more readable rules and faster 

learning.  

Table 11. Number of rules induced 

Object Number of rules 

ball 30 

bowl 27 

cap 21 

cereal box 7 

coffee mug 36 

kleenex 39 

lemon 27 

 

6. Conclusion 

This paper demonstrates the ability of ILP to learn relational representations of object 

classes from 3D point clouds. By using the plane as a primitive component, a point cloud 

is segmented using point–based surface normal vectors. Plane features and plane-pair 

relationships, such as the angle between planes and their directional relationships, are 

used to convert the input data into training examples for ALEPH. Preliminary 

experiments have also been conducted with Metagol (Stephen Muggleton et al. 2013). 10-

fold cross validation indicates that this approach is capable of producing highly accurate 

classifiers. Further experiments with Metagol are intended since this system is capable of 

predicate invention. 

The region growing algorithm can benefit from a noise reduced point cloud, since the 

normal vector calculation and the region growing algorithm are sensitive to the noise and 

might produce incorrectly merged regions. Noise reduction algorithms such as jump edge 

filtering (Holz et al. 2011) may be suitable, especially for finding better boundaries (Cang 

and Hegde 2009; Sotoodeh 2006; Weber et al. 2011) for each region.  

We would like to learn to recognise a greater variety of objects from the rescue 

environment, as well as objects in home and office environments, extending the method 

to more domains and objects with curved surfaces. Although we showed that our method 

can be applied to objects with curved surfaces, it will be more helpful to construct a 

variety features, such as generalised cylinders, spheres and other shape primitives, as well 
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as planes for the pre-processing. By extending the primitives from planes to a larger set of 

primitives, the number of extracted primitives and consequently the complexity of the 

rules should be reduced.  

We intend to perform further testing on data sets that contain more similar objects. 

Although we have learned ‘kleenex’ and ‘cereal box’ or ‘ball’ and ‘lemon’ categories, 

there is still some analysis to be done on discriminating categories that have similar 

shapes. Other features may help to distinguish them more clearly. 

Some features, such as directional relationships, can be modified to be more suitable for 

3D space. A hierarchical structure that combines the spatial configuration with other 

information (Antanas et al. 2012) may also be a fruitful area to study. 

Other modifications of the features can also improve performance. For example, the 

feature ch_ratio(plane, ratiobin), gives the ratio between diameter and width of a region’s 

convex hull.  This feature might appear in some rules with different consecutive ‘ratiobin’ 

values for the same object class, e.g.  ‘2±0.25’, ‘2.5±0.25’ and ‘3±0.25’.  If we introduce 

an interval for ‘ratiobin’, the three values can be represented as [2-0.25,3+0.25]. As a 

result, the number of rules can be reduced. Another option is to add this kind of 

generalization into the learner. 

The system can be modified to operate in an unsupervised learning mode, where the user 

does not need to label plane sets. Instead, we use CAD models to extract features for each 

object class as suggested by Böhm and Brenner (2000). Another option is using 

previously segmented data, similar to those which we have used for the final experiment 

here. 

The image pre-processing is parameterised so that it can be applied to a variety of range 

images. We have tested our system using a SwissRanger SR-3000, the Microsoft Xbox 

Kinect and ASUS Xtion PRO Live sensors.  These parameters, threshold values and bin 

sizes can be learned, rather than having them defined by the user. 

In this work, we have chosen to build one binary classifier for each class. We would like 

to compare this against building a single multiclass classifier and how this affects the 

performance. For this purpose, we can compare our current one-vs.-rest approach, which 

Rifkin and Klautau (2004) claim is more accurate than other multi-class approaches. 

However, Abudawood and Flach (2011) question this technique for first-order learning 

and suggest forming one rule set by combining the rules. 
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