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Abstract Object detection, classification and manipulation are some of
the capabilities required by autonomous robots. The main steps in object
classification are: segmentation, feature extraction, object representation
and learning. To address the problem of learning object classification
using multi-view range data, we used a relational approach. The first
step of our object classification method is to decompose a scene into
shape primitives such as planes, followed by extracting a set of higher-
level, relational features from the segmented regions. In this paper, we
compare our plane segmentation algorithm with state-of-the-art plane
segmentation algorithms which are publicly available. We show that our
segmentation outperforms visually and also produces better results for
the robot action planning.

Keywords: object classification, robot action planning, planar segment-
ation, point cloud, range data.

1 Introduction

A considerable amount of research has been devoted to generic object recognition
(Opelt, 2006; Vasudevan et al., 2007; Shin, 2008; Endres, 2009), which is required
by robots in many tasks. For instance, in service robotics applications, such as a
catering or a domestic robot (Shin, 2008), the robot must recognise specific kinds
of tableware, while the robot’s ability to distinguish a set of products is necessary
in industrial applications (Endres, 2009). We are mostly interested in urban
search and rescue; where a team of robots are sent to a post-disaster environment.
The robot’s mission is to traverse the arena, to search for victims while making
a map of the area. Rescue robots may be tele-operated or autonomous. When
running autonomously, classification of objects is useful for reporting to human
rescuers what is in the environment as well as determining the robot’s behaviour.
For example, recognising a staircase can provide necessary information to a
wheeled robot (Figure 1a) to avoid that object, whereas a tracked robot (Figure
1b) is capable of climbing stairs but it must reconfigure its flippers (Figure 2)
to be able to climb (Kalantari et al., 2009) successfully as shown in Figure 3.
Another example is to use the relation between surfaces to grasp objects (Prankl
et al., 2013).
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(a) Emu (b) Negotiator

Figure 1: Some Autonomous Robots (Team
CASuality in RoboCup 2011) (McGill et al.,
2012)

Figure 2: Robot Planning

Figure 3: Robot climbing stairs

Figure 4: Range image and corresponding point cloud from front and top view
(Farid and Sammut, 2014a)

Range cameras have become popular in robotics because they are small, light,
consume relatively little power and have the ability to produce range measure-
ments of up to several metres, making them suitable for indoor use. Range images
are acquired by these 3D range/depth cameras, such as the Microsoft Kinect and
ASUS Xtion PRO LIVE. These images are like grey scale images in which the
value of each pixel represents the distance of the sensor to the surface of an ob-
ject in a scene from a specific viewpoint (Gächter et al., 2006), and can be used
to infer the shape of the object (Hegazy and Denzler, 2009). The Kinect and
Xtion sensors also provide a colour video image. However, in this research, only
the depth image is used for object recognition as it is capable of operating in the
dark, which is often required in search and rescue operations. Furthermore, col-
our calibration under different lighting conditions is troublesome (Opelt, 2006).

A range image can be transformed into a point cloud by converting each pixel
of the image into 3D coordinates. Figure 4 shows a range image of a staircase
with four steps. The image was taken by a robot positioned in front of the
staircase. In the leftmost image (the grey scale), darker colours represents closer
surfaces. The next image (a colour-mapped version) is presented for clarity. The
next two images are front and top views for the same point cloud, in which the
point cloud is segmented into planes that are identified by unique colours. Since
a range image is taken from one viewpoint, it only provides a partial view of a
scene.
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An object class describes a set of instances that share common properties,
such as shape or function. A common starting point for finding the properties
to be used in similarity matching is to segment the image into different regions
and to characterise the relationships between those regions. Segmenting a point
cloud can be viewed as the process of assigning each point to a region, with an
accompanying label.

In previous work (Farid and Sammut, 2012b; 2014a), we extracted planes
from a 3D point cloud based on a region growing plane segmentation algorithm
(Farid and Sammut, 2012a; 2014c) and used them as primitives for object cat-
egorisation. In this paper, we show that our plane segmentation algorithm out-
performs state-of-the-art plane segmentation methods which are publicly avail-
able. For this purpose, in the following sections, we compare the methods based
on their visual results and the suitability of the plane features for robot action
planning.

2 Background Work

Planes are useful features in built environments, including urban search and
rescue for identifying floors, walls, stairs, ramps and other terrain that the robot
is likely to encounter. Modelling a scene from planar patches is used in computer
vision, robotics and augmented reality (Prankl et al., 2013). For example, it
has been used for scene understanding (Bartoli, 2007; Xu and Petrou, 2011),
localisation (Mohr et al., 1992) and 3D virtual reconstruction of the environment
(McGill et al., 2012).

Our earlier approach (Farid and Sammut, 2012b; 2014a) was most closely
related to Shanahan (2002) and Shanahan and Randell (2004) who used a logic
program as a relational representation for 3D objects in 2D line drawings, while
abduction is used in object recognition. We extended this representation, repla-
cing the 2D lines with 3D planes. Furthermore, we used ALEPH (Srinivasan,
2002) to learn the logic programs from instances obtained by a robot equipped
with a depth camera.

The fact that all points belonging to the same plane are supposed to have
approximately the same normal vector, formed the core of the our segmentation
algorithm. We introduced a region-growing plane segmentation algorithm based
on neighbourhood normal vector similarity to segment an object into a set of
planar surfaces. The method starts with a point and traverses the other points
through the neighbourhood structure. To decide if the point can be added to
the planar surface, it must satisfy the planar surface criteria, which determine
when to add a point to a region. Our algorithm is based on using neighbouring
points to grow the region. This is where the distance threshold, δ, can be used
to decide whether a point is too far away to be accepted as a neighbour for a
point. If a point is not too far, it can be included in the not visited neighbours
list, candidates, as shown in the algorithm 1. We have used the below values for
input variables:

min neighbour num = 4 base update step = 8

num initial points = 16 θ = 15◦ − 20◦
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Features of these planar regions and their relationships were generated to
form a planar description for an object class. The segmentation result and fea-
tures were used for learning. We also showed that the learning system was able to
use other primitives such as cylinders and spheres for the same purpose (Farid
and Sammut, 2014b). A relational representation is useful in this application
because it is our interest to recognise objects that are characterised by relation-
ships between its parts, as in the steps constituting a staircase, and the number
of parts may not be fixed, as the number of steps in a staircase can vary.

Ideally, an off-the-shelf segmentation method would have been used to de-
compose a scene into shape primitives. Several methods claim to provide good
plane segmentation. However, they are not publicly available or they are not us-
able as claimed (Farid, 2014). Two algorithms are provided by PCL (Rusu and
Cousins, 2011) using the RANdom SAmple Consensus (RANSAC) (Fischler and
Bolles, 1981) algorithm. We use these state-of-the-art plane segmentation meth-
ods especially because they are publicly available:

– One of the PCL algorithms, setting the model type as SACMODEL PLANE,
uses 3D points belonging to the point cloud1 without considering normals
or any additional constraints. We call it as SP.

– The other algorithm, using SACMODEL NORMAL PLANE for model type,
has an additional constraint similar to the method used in our research. We
call it as SNP. It assumes the normal of each point must be parallel to the
output plane normal within a maximum angular difference2. The use of SNP
has been shown as a part of PCL’s tutorial for cylinder model segmentation3.

These two methods require a few parameters such as “Distance Threshold” and
“Angle Threshold” to decide whether a point must be added to a plane. We will
discuss these parameters later.

PCL has an algorithm as region growing segmentation. However, this al-
gorithm merges the points to form a segment considering a smoothness con-
straint. The output clusters can be considered as smooth surfaces, not primitives
such as planes, spheres and cylinders. This algorithm can be used to cluster the
point cloud before passing each cluster to other segmentation algorithms such
as SP and SNP. That is why we will not consider this algorithm for comparison
in this paper. Our algorithm will be compared with SP and SNP visually and
based on the quality of the segmented planes.

3 Experimental Evaluation

3.1 Dataset

Figure 1 shows several robots used for urban search and rescue. These ground
robots were designed to participate in the RoboCup Rescue Robot competi-
tion, held annually. The competition arena uses elements developed by the US

1 http://pointclouds.org/documentation/tutorials/planar segmentation.php
2 http://docs.pointclouds.org/1.7.0/group sample consensus.html
3 pointclouds.org/documentation/tutorials/cylinder segmentation.php

http://pointclouds.org/documentation/tutorials/planar_segmentation.php
http://docs.pointclouds.org/1.7.0/group__sample__consensus.html
http://pointclouds.org/documentation/tutorials/cylinder_segmentation.php
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Algorithm 1 Region growing plane segmentation algorithm using normal vectors

Input: PointCloud, normal vector for all points in PointCloud
Input: min neighbour num > 0, base update step > 0
Input: num initial points > 0, min region size
Input: θ // angle threshold
Input: δ // distance threshold
Input: angle mf < 1 // angle modifying factor

1: R← {} // output: Regions
2: for all p in the PointCloud do
3: if p is visited ∨ p is rejected then
4: continue
5: else if number of usable neighbour(p) < min neighbour num then
6: continue
7: end if
8: CR ← p
9: Base normal← get normal vector(p)

10: candidates← get not visited neighbours(p, δ)
11: for all q in candidates do
12: if Size(CR) < num initial points ∨ mod(Size(CR), base update step) = 0

then
13: Base normal← get average normal vectors(CR)
14: end if
15: current angle← get angle(Base normal, get normal vector(q))
16: accepted← false
17: if Size(CR) < num initial points then
18: if current angle < θ then
19: accepted← true
20: end if
21: else if current angle < θ ∗ angle mf then
22: accepted← true
23: end if
24: if accepted then
25: CR ← CR ∪ q
26: set visited(q)
27: candidates← candidates ∪ get not visited neighbours(q, δ)
28: end if
29: end for
30: if Size(CR) > min region size then
31: set final normal vector(CR)
32: R← R ∪ CR

33: end if
34: end for
35: return R
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(a) box class

(b) stairs class

(c) pitch/roll ramp class

Figure 5: Examples of instances used in this research

National Institute of Standards and Technology (NIST, 2010) to certify robots
for emergency operations. These elements simulate typical hazards that might
be encountered in buildings damaged by a disaster such as an earthquake. We
captured data during RoboCup Rescue competitions, as well as from rescue
laboratories and other indoor locations. In this paper, we use a subset (45 im-
ages) of such data which we used for learning classes such as box (12 images),
stairs (15 images) and pitch/roll ramp in a maze(18 images). Since it is difficult
to comprehend the range image, the corresponding colour (RGB) image of the
scene will be shown in the rest of the paper. For each class, different multi-view
data are chosen. For example, Figure 5 shows one view of some of the examples
in this research which previously were used for training box, stairs and pitch/roll
ramp classes respectively.

3.2 Parameters

Distance Threshold SP and SNP are using the distance threshold parameter
to limit the maximum acceptable distance of a point to the plane model. If the
point is further, it will not be considered as an inlier for the plane. In the PCL
tutorial, this value is set to 0.01 for SP. However, for SNP, this value is set to
0.03. Due to this difference, we use more than one value as the distance threshold
in our experiments. For example, for experiments regarding SP, we configured
four experiments by using 0.005, 0.01, 0.03 and 0.05 as distance thresholds.
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Angle Threshold SNP also considers the surface normal of each point and
employs a weight value to determine the surface normal influence. We used the
suggested value by the PCL tutorial as 0.1. We also have used similar threshold
(15) in our region-growing algorithm to accept or reject adding a point to the
current plane. In other words, if the angle of the current plane and the candidate
point is more than 15, the point can not be added to the region.

Minimum Region Size All methods use a value as the minimum size for the
plane. If the number of points belonging to the region is less than this value, the
region will be rejected. We employed 90 for this purpose.

3.3 Data Preparation

Before applying PCL plane segmentation algorithms, we must prepare our data.
Since our range images have 640× 480 pixels, we sub-sample them to 160× 120,
while we converting them to point clouds. All data and the result of experiments
are available via http://rfarid.altervista.org/plane seg compare/index.html.

3.4 Evaluating SP

The first experiment set is based on using the first PCL plane segmentation
algorithm, called as SP. We applied SP on our data four times by using 0.005,
0.01, 0.03 and 0.05 as distance thresholds.

Considering the number of planes Table 1 shows the total and average
number of planes produced per each class. This table indicates that the number
of planes is closer and more reliable using distance thresholds 0.03 and 0.05.

Visual quality of the output We defined four levels of segmentation qual-
ity as H, MH, ML and L indicating high, mid to high, mid to low and low
respectively. We went through all visual results and scored them based on a
human-manual segmentation expectation. Table 2 shows the percentage of the
images per each distance threshold and segmentation quality level. It illustrates
that although we get high segmentation quality around 2% and 11% of times for
using distance threshold as 0.005 and 0.01, these thresholds cause less quality

Table 1: Total and average number of planes using SP
Sum Average

Distance Threshold Distance Threshold

Class 0.005 0.01 0.03 0.05 0.005 0.01 0.03 0.05

box 182 108 67 60 15.17 9 5.58 5

pitch/roll ramp 493 281 144 116 27.39 15.61 8 6.44

stairs 329 226 124 84 21.93 15.07 8.27 5.6

Total 1004 615 335 260

http://rfarid.altervista.org/plane_seg_compare/index.html
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Table 2: Distribution of segmentation
quality using SP

Distance Segmentation quality level
Threshold H MH ML L

0.005 2.22% 11.11% 8.89% 77.78%

0.01 11.11% 6.67% 53.33% 28.89%

0.03 0.00% 33.33% 62.22% 4.44%

0.05 0.00% 24.44% 71.11% 4.44%

Table 3: Distribution of segmentation
quality per object class using SP for
distance threshold as 0.03

Seg. quality level

Class H MH ML L

box 0% 83% 17% 0%

pitch/roll ramp 0% 28% 61% 11%

stairs 0% 0% 100% 0%

Figure 6: Example of SP segmentation result for stairs using dis. thr. as 0.03

level of segmentation. In contrast, using threshold as 0.03 and 0.05 produces
results with the mid to low and mid to high level of segmentation quality.

Table 3 shows the same distribution per class while we used 0.03 as distance
threshold. It indicates that the 83% of images containing box class are segmented
with the mid to high level of segmentation quality, while 61% of pitch/roll ramp
images have mid to low level of segmentation quality and all the stairs class
images are segmented with a mid to low level of segmentation quality. Figure 6
shows three examples of stairs using SP segmentation (with distance threshold
as 0.03) corresponding to the scenes shown in Figure 5b. Each plane is coloured
differently. All the segmentation results are available in the experiment website.

3.5 Evaluating SNP

The second experiment set is based on using the second PCL plane segmentation
algorithm, called as SNP, which employs normal vectors in its process. Since
using 0.005 as distance threshold caused a major low quality segmentation for
SP, we avoided using 0.005 and applied SNP on our data three times by using
0.01, 0.03 and 0.05 as distance threshold values.

Considering the number of planes Table 4 shows the total number and
average number of planes produced using SNP per each class. This table indicates
that the number of planes are closer and more reliable using distance thresholds
as 0.03 and 0.05.

Visual quality of the output For analysing the visual quality of the output,
we used the same approach employed for SP. Table 5 shows the percentage
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Table 4: Total and average number of planes using SNP
Sum Average
Distance Threshold

Class 0.01 0.03 0.05 0.01 0.03 0.05

box 235 98 89 19.58 8.17 7.42

pitch/roll ramp 456 269 177 25.33 14.94 9.83

stairs 174 205 191 12.43 13.67 12.73

Total 865 572 457 19.22 12.71 10.16

Table 5: Distribution of segmentation
quality using SNP

Distance Segmentation quality level
Threshold H MH ML L

0.01 0.0% 0.0% 2.2% 97.8%

0.03 0.0% 51.1% 48.9% 0.00%

0.05 4.4% 80.0% 15.6% 0.00%

Table 6: Distribution of segmentation
quality per class using SNP

Dist. Thr.=0.05 Seg. quality level

Class H MH ML L

box 8.3% 75.0% 16.7% 0.00%

pitch/roll ramp 0.0% 72.2% 27.8% 0.00%

stairs 6.7% 93.3% 0.0% 0.00%

of the images per each distance threshold and segmentation quality level. It
illustrates that the distance threshold set at 0.05 produces more mid to high
quality segmentation.

Table 6 shows the same distribution per each class while we used 0.05 as
distance threshold. It indicates that for each class images, the majority of seg-
mentation quality are mid to high. The visual comparison between SP and SNP
results shows that SNP outperforms SP. Figure 7 shows the corresponding ver-
sion of Figure 6 using SNP segmentation (with distance threshold as 0.05), where
each plane is coloured differently. All the segmentation results are available in
the experiment website.

3.6 Comparing SNP and Our Method

We applied our region-growing plane segmentation algorithm on the same data.
As shown before, SNP outperformed SP, so we just compared the result of seg-
mentations between ours and SNP (using distance threshold 0.05) as follows:

Considering the number of planes The average number of planes is 9.44 for
ours while this average is 10.16 for SNP.

Figure 7: Example of SNP segmentation result for stairs using dis. thr. as 0.05
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Figure 8: Colour legend for segmentation, RGB version of the scene and results
of segmentations using our algorithm (left) and SNP (right)

Visual quality of the output To compare the results visually, we split a score
100 between the result of our segmentation method and SNP. We scored SNP
as 2138 totally, which means 47.51 on average. Additionally, we also asked some
people to do the same. We provided a web-page4 showing the RGB version of
the scene and the results of segmentation for method 1 and 2. The participants
did not know which method was which. They were asked to split the score 100
between the two methods based on their expectations of the correct manual
segmentation. SNP was scored 46.86 on average, while our algorithm was scored
53.14 on average. This comparison shows that the our segmentation algorithm
outperforms the SNP visually.

Comparison based on the quality of the features Visual comparison might
not be good enough to compare two segmentation methods. Since the result of
segmentation can be passed to a robot as features for action planning, it is
important to evaluate the correctness of these features, which is not possible to
do just by visual comparison. In this case, a plane can be represented by a point
belonging to the plane, its normal vector and its boundaries. The boundary can
be represented by a convex hull (Farid and Sammut, 2012b). That is where SNP
fails. SNP uses RANSAC and produces planes that cover many sparse points. As
a result, two set of points, which are very far from each other, are put together
in the same plane, while there is no such planar surface in the reality. These
virtual planes can interfere with robot action planning, since there is no planar
surface where the robot expects one based on the features provided. Figure
8 shows an example of such situation. Using the colour legend provided, the
figure shows that our segmentation produces 10 planes, while SNP produces
12 planes in which planes coloured as regions 1, 3, 8, 9 and 10 are sparse and
the corresponding features will be problematic. Figure 9 shows another example
based on the leftmost stairs instance in Figure 5b. SNP produces regions 8, 9, 12
and 13 by putting edges of steps together as planes, which cause trouble when
the robot uses these planes for actions such as climbing.

4 http://rfarid.altervista.org/plane seg compare/comp.html

http://rfarid.altervista.org/plane_seg_compare/comp.html
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Table 7: Distribution of
sparse planes using SNP
(distance threshold=0.05)

Number of
Sparse Planes Frequency

0 5

1 13

2 9

3 9

4 7

5 2

Figure 9: Segmented planes using our algorithm
(left) and SNP (right)

Considering this sparse issue, we counted the number of sparse planes for
the segmentation results by SNP. The details are available in the experiment
website. Table 7 shows the numerical results of this evaluation and how the
number of sparse regions per images are distributed. Based on these numbers,
we can say 96 planes of total 457 planes for 45 images had this issue due to SNP
segmentation. That is, there is an average of 2.13 planes per image affected by
this issue.

Comparison on distance threshold As shown before, SP and SNP are sens-
itive to the value chosen for the distance threshold. Some images might work
well with one value and another value might produces better results on another
subset of images. SP and SNP do not suggest any systematic way to define the
distance threshold. Our algorithm calculates the distance threshold based on
each image automatically by using the minimum distance between each point
and its adjacent neighbours and finding the average of them as the base. So, this
distance threshold is also reliable in existence of noisy data. The detail and the
relevant experiments are provided in Farid and Sammut (2014c).

4 Conclusion

Segmentation is an important step in robotics applications such as object clas-
sification and robot action planning. In this paper, we compared our region-
growing plane segmentation algorithm with two state-of-the-art plane segment-
ation algorithms which are publicly available by PCL. We showed that the
visual quality of our segmentation outperforms the others. We also showed that
those RANSAC based segmentation algorithm can create planes with very sparse
points which provide wrong information for robot action planning. We are plan-
ning to add our plane segmentation algorithm as a new method to PCL an-
d/or ROS. The URL http://rfarid.altervista.org/plane seg compare/index.html
provides the data and the detailed results.

http://rfarid.altervista.org/plane_seg_compare/index.html
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editors, Proc. of the 4th Int. Conf. on Computer Vision, Theory and Applic-
ations, volume 2, pages 321–326. INSTICC Press, 2009.

A. Kalantari, E. Mihankhah, and S. A. A. Moosavian. Safe autonomous stair
climbing for a tracked mobile robot using a kinematics based controller. In
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM2009), pages 1891–1896, 2009. doi:10.1109/AIM.2009.5229765.

http://handle.unsw.edu.au/1959.4/53848
http://ida.felk.cvut.cz/ilp2012/wp-content/uploads/ilp2012_submission_6.pdf
http://ida.felk.cvut.cz/ilp2012/wp-content/uploads/ilp2012_submission_6.pdf
http://dx.doi.org/10.1007/s10994-013-5352-9
http://dx.doi.org/10.1007/s10994-013-5352-9
http://dx.doi.org/10.1007/978-3-319-13560-1_29
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201416.pdf
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201416.pdf
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1109/ICVS.2006.54
http://dx.doi.org/10.1109/AIM.2009.5229765


Region-Growing Planar Segmentation for Robot Action Planning 13

M. McGill, R. Salleh, T. Wiley, A. Ratter, R. Farid, C. Sammut, and A. Mil-
stein. Virtual reconstruction using an autonomous robot. In Proceedings of
the International Conference on Indoor Positioning and Indoor Navigation
(IPIN2012), pages 1–8, 2012. doi:10.1109/IPIN.2012.6418851.

R. Mohr, L. Morin, and E. Grosso. Relative positioning with uncalibrated cam-
eras. In J. L. Mundy and A. Zisserman, editors, Geometric Invariance in Com-
puter Vision, pages 440–460. MIT Press, Cambridge, MA, USA, 1992. ISBN 0-
262-13285-0. URL http://dl.acm.org/citation.cfm?id=153634.153656.

NIST. The national institute of standards and technology; test meth-
ods. Retrieved 2014-02-14, 2010. URL http://www.nist.gov/el/isd/

test-methods.cfm.
A. Opelt. Generic Object Recognition. PhD thesis, Graz University of Techno-

logy, 2006.
J. Prankl, M. Zillich, and M. Vincze. Interactive object modelling based on

piecewise planar surface patches. Computer Vision and Image Understanding,
117(6):718–731, 2013. ISSN 1077-3142. doi:10.1016/j.cviu.2013.01.010.

R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In Proc. of
ICRA2011, pages 1–4, 2011. doi:10.1109/ICRA.2011.5980567.

M. Shanahan. A logical account of perception incorporating feedback and expect-
ation. In Proc. of 8th Int. Conf. on Principles of Knowledge Representation
and Reasoning, pages 3–13, Toulouse, France, 2002. Morgan Kaufmann.

M. Shanahan and D. Randell. A logic-based formulation of active visual per-
ception. In D. Dubois, C. A. Welty, and M.-A. Williams, editors, Proc. of
KR2004, pages 64–72. AAAI Press, 2004.

J. Shin. Parts-Based Object Classification for Range Images. PhD thesis, Swiss
Federal Institute of Technology Zurich, 2008.

A. Srinivasan. The Aleph Manual (Version 4 and above). Technical report,
University of Oxford, 2002.
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